1 / 1
" 이태우"으로 검색하여,
3 건의 기사가 검색 되었습니다.
-
▲ 서울공대 재료공학부 이태우 교수팀, 세계 최고 효율과 상업화 수준 동작 수명의 혁신적 페로브스카이트 디스플레이 기술 개발(왼쪽부터 서울대 이태우 교수, 서울대 Qingsen Zeng 연구교수) [출처=서울대학교 공과대학]서울대(총장 유홍림)에 따르면 공과대학(학장 김영오) 재료공학부 이태우 교수 연구팀이 에스엔디스플레이(대표 이태우)와의 공동연구를 통해 차세대 디스플레이를 위한 고효율·고안정성 페로브스카이트 나노결정 발광 입자 기술을 개발하는 데 성공했다.이태우 교수팀은 금속 할라이드 페로브스카이트 발광체의 고질적인 불안정성 문제를 근본적으로 해결하면서도 세계 최고 수준의 발광 효율, 장기 안정성, 그리고 대면적 공정 확장성을 동시에 달성한 계층적 셸(hierarchical shell, HS) 기반 페로브스카이트 나노입자 기술을 개발했다.이번 연구 성과는 세계 최고 권위의 국제 학술지인 ‘사이언스(Science)’에 표지 논문으로 1월15일(목)자로 게재됐다.인간이 인식하는 정보의 70퍼센트(%) 이상이 시각을 통해 전달되는 만큼 디스플레이 기술은 오랫동안 현대사회에서 가장 중요한 핵심 산업 중 하나로 인식돼 왔다.1990년대 일본이 글로벌 디스플레이 시장을 주도했으나 이후 한국은 LCD와 OLED 기술에 대한 공격적인 투자로 시장의 주도권을 확보해왔다.최근 중국 디스플레이 기업들이 정부 차원의 강력한 지원을 바탕으로 빠르게 시장 점유율을 확대하면서 OLED 기술 격차도 점차 좁혀지고 있다.이러한 상황에서 기존 OLED를 넘어설 수 있는 근본적으로 새로운 차세대 디스플레이 기술 개발이 국가적·산업적 과제로 부상하고 있다.이러한 배경에서 이태우 교수 연구팀이 2014년 원천 특허부터 시작해서 10여 년간 세계적으로 선도해 온 페로브스카이트 발광체는 차세대 디스플레이용 핵심 소재로 주목받고 있다.페로브스카이트는 유·무기 양이온, 중심 금속 양이온, 할라이드 음이온으로 구성된 이온 결정 구조를 가지며 매우 높은 색순도, 우수한 광전자적 특성, 낮은 소재 비용, 그리고 용이한 파장 조절성이라는 장점을 지닌다.이러한 특성으로 인해 페로브스카이트 발광체는 초고해상도 TV는 물론 증강현실(Artificial Reality, AR)과 가상현실(Virtual Reality, VR) 같은 차세대 디스플레이 응용 분야의 유력한 후보로 부상해왔다.차세대 디스플레이를 구현하기 위해서는 기존 DCI-P3 대비 약 40% 확장된 색영역을 갖는 Rec. 2020 색 표준을 충족해야 한다.그러나 기존 유기 발광체나 양자점은 각각 약 50나노미터(nm) 및 30nm 수준의 비교적 넓은 발광 반치폭(Full Width at Half Maximum, FWHM)을 가져 Rec. 2020 기준을 완전히 만족시키는 데 한계가 있다.반면 페로브스카이트 발광체는 약 20nm 수준의 본질적으로 매우 좁은 발광 반치폭(FWHM~20nm)을 가지며 Rec. 2020 색 표준을 충족할 수 있는 거의 유일한 발광 소재로 평가된다.이러한 장점을 바탕으로 이태우 교수 연구팀은 지난 10여 년간 페로브스카이트 발광다이오드(Perovskite Light Emitting Diode, PeLED) 분야를 세계적으로 선도해왔다.2014년 상온에서 PeLED의 외부발광효율은 0.1% 수준이었지만 단 1년 만에 8.53%로 끌어올려 2025년 ‘사이언스(Science)’에 보고했으며 이 분야에서 최초의 고효율 페로브스카이트 LED 논문으로 평가돼 3100번 이상 인용됐다.이후 고효율 페로브스카이트 나노결정 발광 입자를 도입해 소자 효율을 20% 이상으로 향상시켰다(Nature Photonics, 2021. Nature Nanotechnology, 2022).나아가 2022년에는 이론적 한계에 근접한 28.9%의 외부양자효율과 47만nit의 밝기 그리고 약 3만 시간에 달하는 동작 수명을 동시에 달성한 PeLED를 ‘네이처(Nature)’에 보고함으로써 전기 구동형 페로브스카이트 소자의 상용 가능성을 입증했다.이번 연구는 이러한 소자 수준의 성과를 넘어 광 변환(down-conversion) 방식 디스플레이에 필수적인 고체 상태 페로브스카이트 발광체의 근본적 한계를 해결하는 데 초점을 맞췄다.실제 디스플레이 및 조명 시스템, 특히 청색 광원을 기반으로 한 색 변환 구조에서는 발광체가 강한 흡광도와 높은 광발광 양자효율(Photoluminescence Quantum Yield, PLQY)을 동시에 가져야 하며 이 두 요소의 곱으로 정의되는 외부양자효율(External Quantum Yield, EQY)이 전체 광 변환 효율을 결정한다.그러나 대부분의 고체 발광체는 농도를 높여 흡광도를 증가시키는 과정에서 농도 소광(concentration quenching)과 자기 흡수(self-absorption)로 인한 비방사 손실(non-radiative loss)이 발생해 발광체의 종류에 상관없이 EQY가 약 65% 이하로 제한돼 왔다.페로브스카이트 나노입자는 높은 흡광 계수와 뛰어난 색순도로 인해 고체 발광체로서 이상적인 후보로 평가되며 용액 상태에서는 95% 이상의 PLQY를 나타낼 수 있다.하지만 연성 이온 격자(soft ionic lattice)와 화학적으로 불안정한 표면 특성으로 인해 빛·열·수분·산소와 같은 작동 환경 스트레스에 취약해 고체 박막에서는 PLQY가 급격히 감소하고 수명이 짧아지는 문제가 있다.이를 근본적으로 해결하기 위해 이태우 교수 연구팀은 PbSO₄, SiO₂, 고분자층이 상호 결합된 계층적 셸 구조(hierarchical shell, HS)를 도입한 새로운 안정화 전략을 개발했다.이 구조는 기존의 약한 표면 리간드 결합이나 단순 캡슐화 방식과 달리 페로브스카이트의 격자와 표면을 화학적으로 동시에 고정함으로써 빛과 열, 수분에 의해 촉진되는 격자 연화(lattice softening), 이온 이동(ion migration), 계면 반응을 효과적으로 억제한다.그 결과 계층적 셸이 적용된 페로브스카이트 나노입자(HS-PeNC) 박막은 약 100%의 PLQY를 달성함과 동시에 60°C 및 상대습도 90%의 가속 열·습도 환경에서 최초 PLQY의 T90 수명(초기 PLQY의 90% 수준으로 감소하는 데 걸리는 시간) 3900시간, 연속 청색광 조사 조건에서는 2만7234시간으로 외삽되는 T90 수명을 기록했다.이러한 성능은 기존 페로브스카이트 나노입자뿐만 아니라 모든 고체 발광체 가운데 최고 수준으로 상용 디스플레이의 안정성 기준을 크게 상회한다.또한 거의 100%에 가까운 PLQY로 인해 자기 흡수 손실이 광자 재순환(photon recycling)으로 전환되면서 고체 박막의 EQY는 91.4%에 달해 형광체, 유기 발광체, 양자점, 탄소점, 금속 나노클러스터, 기타 할라이드 페로브스카이트를 모두 능가하는 최고 기록을 달성했다.계층적 셸 구조는 우수한 광특성뿐 아니라 환경 안전성과 공정 적합성도 함께 확보했다. 계층적 셸 구조는 수중에서 Pb²⁺ 용출(leakage)을 효과적으로 차단했으며,생체 세포 독성 평가 결과에서도 일반적인 폴리스티렌 배양 기판과 유사한 수준의 건강한 세포 증식을 보였다.잉크젯 프린팅과 고해상도 포토리소그래피 공정과의 뛰어난 호환성을 바탕으로 3500PPI 이상의 초고해상도 패터닝이 가능해 차세대 마이크로 LED 및 AR·VR 디스플레이에 적용할 수 있음을 입증했다.아울러 본 기술은 대면적 양산 가능성도 확인했다. 서울대학교의 지원으로 이태우 교수가 공동 설립한 에스엔디스플레이와의 협력을 통해 1.5m 폭과 10m 길이 규모의 롤투롤 공정 라인을 이용한 균일한 페로브스카이트 나노입자 색변환 필름 제작에 성공했다.이를 바탕으로 10.1인치 태블릿, 28인치 및 32인치 모니터, 43인치 및 75인치 TV 시제품을 제작했으며 모든 디스플레이에서 균일한 밝기와 선명한 색 재현을 확인했다.이들 시제품은 Rec. 2020 기준 대비 97% 이상(면적 기준)의 색 영역 면적 비율을 달성해 상용 LCD, InP 양자점, OLED 디스플레이를 능가하는 성능을 보였다.본 연구는 서울대학교를 중심으로 SN Display Co., Ltd., Imperial College London, University of Cambridge, 한양대학교, KAIST, University of Tennessee, Universidad de Valencia, PEROLED Co., Ltd.와의 공동 연구로 수행됐다.한편 본 논문의 제1저자인 Qingsen Zeng 박사는 서울대학교 재료공학부 조교수급 연구교수로 이태우 교수 연구팀에서 근무하고 있으며 색 변환 디스플레이, 단일광자 발광체, 페로브스카이트 초격자 LED 등 할라이드 페로브스카이트 나노입자 기반 발광 소재 연구를 수행하고 있다.이태우 교수는 “페로브스카이트 나노결정 발광체의 연성 격자와 불안정한 표면을 동시에 고정하는 계층적 셸 구조를 통해 거의 완벽한 발광 효율과 상용화 수준의 장기 안정성을 동시에 달성할 수 있었다”며 “이번 성과는 페로브스카이트 발광체가 연구실 수준을 넘어 차세대 고색재현 디스플레이 산업을 이끌 핵심 기술로 자리매김할 수 있음을 보여준다”고 밝혔다.※ 참고자료- 논문명/저널: A hierarchical shell locks and stabilizes perovskite nanocrystals with near-unity quantum yield / Science
-
▲ 서울공대 재료공학부 이태우 교수팀, 완전 신축성 OLED 세계 최고 효율 달성(왼쪽부터 이태우 서울대학교 교수, 유리 고고치(Yury Gogotsi) 드렉셀대학교 교수, 주환우 서울대학교 박사, 김현욱 서울대학교 박사과정, 한신정 서울대학교 박사, 장단전(Danzhen Zhang) 드렉셀대학교 박사) [출처=서울대학교 공과대학]서울대(총장 유홍림)에 따르면 공과대학(학장 김영오) 재료공학부 이태우 교수와 미국 드렉셀(Drexel)대 유리 고고치(Yury Gogotsi) 교수의 공동 연구팀이 차세대 신축성 발광 소자의 한계를 극복하고 세계 최고 효율의 완전 신축성(fully stretchable) 발광 소자를 개발했다.완전 신축성 발광 소자란 모든 구성층이 신축성을 갖는 발광 소자를 뜻한다. 이번 연구 성과는 세계 최고 권위의 국제 학술지 ‘네이처(Nature)’에 1월15일 게재됐다.웨어러블 기기 시장이 급성장하면서 피부에 직접 부착해 생체 신호를 실시간으로 시각화할 수 있는 웨어러블 디스플레이의 중요성이 높아지고 있다.하지만 기존 신축성 디스플레이는 주로 딱딱한 비신축성 발광 소자를 신축성 인터커넥트(interconnect)로 연결한 구조를 사용해 인장 시 접합부 신뢰성이 낮고 피부 밀착성이 떨어지며 표시 화질이 저하되는 한계를 지니고 있었다.이에 반해 완전 신축성 디스플레이는 소자 자체가 늘어나는 구조이기 때문에 웨어러블 환경에서 고해상도를 유지하며 안정적인 디스플레이 구현이 가능하다.그럼에도 완전 신축성 올레드(OLED)는 고유 신축성(intrinsically stretchable) 발광층과 전극 기술에서 근본적인 난제를 안고 있었다.발광층의 경우 유기 반도체에 신축성을 부여하기 위해 부드러운 절연성 탄성체(elastomer)를 첨가해야 하는데 이로 인해 엑시톤 전달 경로가 끊어져 전하 수송과 엑시톤 에너지 전달, 발광 효율이 모두 크게 저하된다.전극 역시 기존 올레드에 쓰이는 딱딱한 금속 전극을 사용할 수 없어 금속 나노와이어를 탄성체 안에 임베딩하는 구조가 연구돼 왔다.그러나 이 방식은 노출된 나노와이어 간 전하 전달이 원활하지 않고 노출 면적도 제한적이어서 상부 유기층으로의 전하 주입 효율이 낮았다.실제로 지금까지 보고된 완전 신축성 발광 소자의 외부양자효율은 약 6.8퍼센트(%) 수준으로 30% 이상이 보고되는 상용 올레드와 큰 격차가 있었다.공동 연구팀은 이러한 한계를 해결하기 위해 ‘엑시플렉스(exciplex) 기반 인광 발광층’과 ‘맥신(MXene)-접합 신축성 전극’을 새롭게 설계했다.연구팀은 먼저 엑시톤 전달 문제를 해결하기 위해 엑시플렉스 호스트 물질을 도입했다. 기존 신축성 발광층에서는 절연성 첨가제로 인해 근거리 삼중항 엑시톤 전달(덱스터 전달)이 억제돼 효율이 크게 저하됐다.연구팀은 엑시플렉스가 삼중항 엑시톤을 단일항 엑시톤으로 변환시켜 장거리 에너지 전달(포스터 전달)을 가능하게 하는 새로운 메커니즘을 통해 신축성과 고효율을 동시에 갖춘 발광층 구조를 세계 최초로 구현했다.또한 전극 상부에는 금속 탄화물·질화물 계열의 2차원 물질인 맥신을 적용해 우수한 전기전도도와 신축성, 폭넓은 일함수(work function) 조절 능력을 확보함으로써 전하 주입 효율을 크게 향상시켰다. 이는 맥신을 신축성 광전자 소자에 적용한 세계 최초의 사례다.그 결과 개발된 완전 신축성 올레드는 외부양자효율 17%라는 세계 최고 수준의 성능을 달성했다. 기존 완전 신축성 올레드가 낮은 효율로 상용화가 어려웠던 점을 고려할 때 이번 기술은 학계와 산업계 모두에서 중요한 전환점으로 평가된다.또한 높은 인장 변형 조건에서도 밝기와 효율 저하가 거의 없어 실제 웨어러블 환경에서도 안정적인 구동이 가능함을 확인했다.한편 이번 연구는 서울대학교를 중심으로 미국 드렉셀대학교, 일본 규슈(Kyushu)대학교 등 총 10개 기관이 참여한 공동 연구로 수행됐다.연구 수행은 과학기술정보통신부가 재원으로 하는 한국연구재단 연구과제(RS-2025-00560490), 선도연구센터(Pioneer Research Center) 사업(RS-2022-NR067540), 나노·소재기술개발사업(RS-2024-00416938)의 지원으로 이루어졌다.이태우 교수는 “완전 신축성 올레드 소자에서 신축성 부여 과정에 필연적으로 발생하던 성능 저하 문제를 발광층과 전극 양 측면에서 동시에 해결할 수 있는 소재적 해법을 제시했다”며 “완전 신축성 올레드가 실험실 수준을 넘어 실제 응용 단계로 진입할 수 있음을 보여주는 성과로, 향후 웨어러블 디스플레이용 발광 소자의 실용화를 크게 앞당길 것”이라고 밝혔다.◇ 연구진 진로주환우 박사는 서울대 재료공학부에서 박사과정을 마친 후 현재 미국 조지아공과대(Georgia Institute of Technology)에서 박사후연구원으로 재직 중이다. 웨어러블 기기의 전력 공급 문제를 해결하기 위한 신축성 태양전지 연구를 수행하고 있다.서울대 박사과정에 재학 중인 김현욱 연구원은 완전 신축성 올레드와 기존 상용 올레드 간 효율 격차를 더욱 줄이기 위한 고효율 발광체 개발 연구를 이어가고 있다. 향후 박사후연구원으로서 관련 연구를 계속할 계획이다.연구진은 이번 성과를 바탕으로 완전 신축성 올레드의 산업 적용 가능성을 더욱 확장하기 위한 후속 연구를 지속하고 있으며, 차세대 웨어러블 기기 개발에 크게 기여할 것으로 기대된다.◇ 참고 자료- 논문명/저널: Exciplex-enabled high-efficiency, fully stretchable OLEDs / Nature
-
▲ 서울공대 강승균·이태우·최우영 교수 ‘2025 국가연구개발 우수성과 100선’ 선정(왼쪽부터 강승균 서울대 재료공학부 교수, 이태우 서울대 재료공학부 교수, 최우영 서울대 전기정보공학부 교수) [출처=서울대학교 공과대학]서울대학교(총장 유홍림) 공과대학(학장 김영오,이하 서울공대)에 따르면 과학기술정보통신부가 주관하는 ‘2025년 국가연구개발 우수성과 100선’에 강승균·이태우·최우영 교수(가나다순)의 연구 성과가 최종 선정됐다.‘국가연구개발 우수성과 100선’은 정부 지원을 받아 수행된 연구 중 학술적 가치와 경제적 파급 효과가 뛰어난 성과를 선정하는 제도다. 국가연구개발사업을 수행하는 각 부처가 추천한 연구개발 성과 가운데 우수성과를 선정한다.2025년 총 970건의 후보 성과를 대상으로 전문가 평가와 대국민 공개 검증을 거쳐 최종 100건이 선정됐다. 기계·소재 분야에서는 재료공학부 강승균 교수가 개발한 ‘형상기억 생분해 고분자 기반 주사형 전자텐트로 구현한 전주기 최소침습 뇌 인터페이스 플랫폼’이 선정됐다.강승균 교수팀은 광범위한 절개, 고정 시술, 제거 수술이 필수적인 기존 뇌 인터페이스 기술의 구조적 한계를 극복하기 위해 형상기억·생분해성 전자소자 플랫폼이라는 새 접근법을 제시했다.이 플랫폼은 직경 5밀리미터(mm) 이하로 접힌 전자텐트가 주사기를 통해 체내에 삽입된 뒤 체온(36~37°C)에 반응해 약 200배 크기로 자동 전개되고 사용 후에는 체내에서 자연 분해되는 기술로 ‘전주기 최소침습’ 뇌 인터페이스를 세계 최초로 구현한 성과라는 평가다.특히 우수성과 100선으로 선정된 핵심 기술은 PLCL-PLGA 기반 형상기억 고분자와 방사형 기계 전개 구조를 결합한 ‘전자텐트(electronic tent)’ 플랫폼을 통해 삽입 과정에서 조직 손상 최소화와 대면적 뇌 신호 측정이 가능해졌다.해당 연구는 2024년 국제 저명 학술지 ‘네이처 일렉트로닉스(Nature Electronics)’에 실리며 그 기술적 우수성을 세계적으로 인정받은 바 있다.형상기억 고분자·생분해 전자소자·연성 무선 회로를 통합한 새로운 생체 인터페이스 패러다임을 제시한 해당 기술은 향후 뇌전증·파킨슨병·뇌졸중 등 신경계 질환 진단 및 중재, 척수·심장·위장관 등 곡면 장기 인터페이스와 차세대 뇌-기계 인터페이스(BMI) 분야에서 널리 활용될 것으로 기대를 모은다.강승균 교수는 “이번 성과는 뇌-기계 인터페이스(BMI)의 실용화 과정에서 가장 큰 장벽으로 지적돼 온 침습성과 심리적 거부감을 실질적으로 낮추는 데 기여했다는 점에서 의미가 크다”며 “BMI 기술이 연구 단계를 넘어 실제 임상과 사회 전반으로 확산되는 데 중요한 전환점이 되길 기대한다”고 밝혔다.정보·전자 분야에서는 재료공학부 이태우 교수가 개발한 ‘차세대 고효율·고색순도 하이브리드 탠덤 페로브스카이트 발광다이오드’, 전기정보공학부 최우영 교수가 개발한 ‘토션 비아 구조를 적용한 고내구성·초저전력 삼차원 집적 나노전기기계 비휘발성 메모리 소자/회로’가 선정됐다.기존 디스플레이 기술의 한계를 넘기 위해 차세대 소재인 페로브스카이트(Perovskite)에 주목한 이태우 교수팀은 글로벌 디스플레이 시장의 패러다임을 바꿀 혁신적 기술을 선보였다.현재 상용화된 유기발광다이오드(OLED)나 양자점발광다이오드(QLED)는 색 순도 면에서 근본적 한계를 지녀 차세대 색 표준인 Rec.2020을 완벽히 구현할 수 없었다.이에 연구팀은 높은 색 순도의 페로브스카이트 발광다이오드(PeLED)와 실용성이 검증된 OLED를 수직으로 적층한 ‘하이브리드 탠덤 PeLED’를 고안했다. 이는 낮은 효율과 짧은 수명이라는 단일 PeLED의 고질적 문제를 동시에 해결할 수 있는 혁신적 연구 전략으로 평가받는다.외부양자효율(EQE) 37퍼센트(%)의 세계 최고 성능, 기존의 단일 PeLED 대비 수백 배 이상 늘어난 약 5600시간의 수명을 확보한 PeLED를 제시한 해당 연구는 그 독창성과 우수성을 인정받아 세계적 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’에 표지 논문으로 게재됐다.향후 해당 기술은 페로브스카이트 발광 소자의 상용화를 위한 설계 플랫폼을 구축해 후속 융합 연구를 촉진할 예정이다. 또한 연평균 약 40%의 고성장이 예상되는 XR(확장현실) 및 초실감 디스플레이 시장을 선점하고 글로벌 시장에서 한국 디스플레이 산업의 리더십을 공고히 하는 데 기여할 전망이다.이 교수는 “본 연구실에서 태동시킨 기술이 상용화에 근접하게 발전한 모습을 보니 깊은 감동과 희망을 느낀다”며 “이 기술이 실제로 제품화돼 세계 시장을 선도할 수 있도록 정부와 산업계의 지속적인 관심과 투자가 이어지길 기대한다”고 소감을 밝혔다.최우영 교수팀은 기존에 수동적으로만 활용되던 CMOS 배선층에 나노전기기계(NEM) 메모리 소자를 직접 3차원으로 집적하는 새 접근법을 제시했다.이를 통해 초저전력·무누설전류·급격 스위칭이라는 NEM 고유의 장점을 유지하면서도 그동안 실용화의 걸림돌이었던 신뢰성 문제의 해결에 성공했다.특히 이번에 우수성과 100선으로 선정된 핵심 기술은 비틀림(토션)을 허용하는 비아 앵커(Torsional-Via-Assisted, TVA) 구조의 NEM 메모리 소자다.연구팀은 이 소자의 반복 구동 시 발생하는 기계적 스트레스의 집중을 효과적으로 분산시켜 기존에 비해 약 5배 향상된 내구성과 안정적인 동작을 실증했다.해당 연구는 2024년 국제 저명 학술지 ‘IEEE Electron Device Letters’의 12월호 표지논문으로 선정되며 학문적·기술적 가치를 인정받은 바 있다.또한 최 교수팀은 NEM 메모리 소자를 이용해 물리적 복제 불가 함수 및 연상형 메모리를 구현한 연구 결과를 세계적 국제 학술지 ‘Advanced Intelligent Systems’ 2025년 7월호와 9월호에 각각 표지 논문으로 게재했다.CMOS 배선층을 능동 소자 공간으로 확장하는 새로운 3차원 집적 패러다임을 제시한 해당 기술은 향후 초저전력 메모리, AI·엣지 컴퓨팅용 반도체, 고에너지 효율 시스템 반도체 등 다양한 분야에서 응용될 것으로 기대된다.최우영 교수는 “본 연구는 기존의 반도체 기술 자산을 최대한 활용하면서도 완전히 새로운 반도체 소자·공정·설계·모델링 기술을 개발, 통합해야 하는 매우 도전적인 과제였다”며 “도전의 여정에서 많은 시행착오를 겪으며 성실히 연구를 수행한 연구실 학생들과 공동 연구자분들께 깊은 감사를 드린다”고 소감을 밝혔다.
1

